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LARGE-SCALE PARALLEL VISCOUS FLOW COMPUTATIONS USING AN

UNSTRUCTURED MULTIGRID ALGORITHM

DIMITRI J. MAVRIPLIS*

Abstract. Tile development and testing of a l)arallel unstructured agglomeration multigrid algorithm for

steady-state aero(tynmnic flows is discussed. The agglomeration lnultigrid strategy uses a graph algorithnl

to construct the coarse multigrid levels fi'mn the given fine grid, sinfilar to an algebraic multigrid approach,

but operates directly on the non-linear system using the FAS apl)roach. The scalability and convergence

rate of the multigrid algorithnl are exanfined on tile SGI Origin 2000 and the Cray T3E. An argument is

given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of

its underlying single grid smoothing schenm. For medium size problems involving several million grid points.

near perfect scalability is obtained for tim single grid algorithm, while only a slight drop-off in parallel

efficiency is observed for the nmltigrid V- and W-cycles, using ut) to 128 processors on the SGI Origin 200(I,

and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability

is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest

grid level contains f_wer points than the total number of processors.

Key words, multigrid, anisotropic, Navier-Stokes

Subject classification. Applied and Numerical Mathenmtics

1. Introduction. Reynolds averaged Navier-Stokes computations using several million grid points have

become commo111)lace today. V_rhile many practic, al problems can be solved to accel)table accuracy with such

methods at these resolutions, the drive to nlore complex problems and higher accuracy is requiring the solu-

tion of ever larger problelns. For example, the flow over aircraft configurations in off-design configurations,

such as high-lift, has been computed with up to 25 million grid points, and cases involving Ul) to l0 s grid

points can be anticipated in the near future [14].

The elusiw_ goal of developing a universally valid turbulence model has also spurred a new interest

in large ed(ty simulati(m (LES) models, which may ultimately require in excess of 109 or even 10 m grid

points for adequate resolution of the relevant eddy sizes, even excluding the thin bo,mdary layer regions.

At the same time, the drive towards more complex configurations and faster gridding turnaround time has

emphasized the use of unstructured grid methods. V, qfile unstructured grid techniques simt)lify the task of

discretizing complex geometries, and offer great l)otential tbr the use of adaptive nmshing techniques, they

incur additional Cl)U and memory overheads as compared to block-structured or overset grid methods. ()n

the other hand, unstructured grid methods are well suited for large scale 1)arallelization, since tim basic data

structures are homogeneous in nature, which enables near perfect load-balancing on very large nmnbers of

processors.

Any large-scale s<)luti<m i)r<)cedure requires the use of an efficient solver, regardless of the amount of

available comt)uter resources. \Vhile a simi)le explicit scheme nlay achieve the best t>arallel efficiency <m
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large numbers of processors, its numerical efficiency (i.e. convergence rate) degrades rapidly as the number

of grid points is increased. Multigrid algorithms have been shown to provide optimal asymptotic complexity.

with the mnnber of operations required for convergence scaling linearly' with tile nmnber of grid points or

unknowns. While other implicit solution techniques can provide fast convergence rates for large problems,

FAS nmttigrid methods aw_id the explicit linearization of the non-linear problem, resulting in an algorithm

which requires considerably less storage, particularly for unstructured mesh discretizations. Furthermore,

because lnultigrid methods are based on explicit or locally-implicit single grid smoothers, they are also highly

memory-latency tolerant, an important consideration in light of current architectural trends, which has seen

dramatic increases in the relative memory latency over the last several decades [8, 12]. Finally, as will be

shown in this paper, multigrid methods can be expected to scale favorably for reasonable size problems on

very large numbers of processors.

The use of cache-based microprocessor parallel computer architectures is rapidly becoming the dominant

approach for large-scale CFD calculations. While parallel vector machines such as the Cray T90 and the

NEC SX-4 offer outstanding performance as measured by computational rates, their required use of fast

but costly memory has limited the amount of memory available on such machines. This is particularly

ilnl)ortant for unstructured grid computations, which have traditionally been memory limited. The use of

low cost hierarchical (cache-based), high-latency memory systelns is somewhat at odds with processors which

rely on very long (global) vector lengths for sustaining high computational rates. Hence, the (tramatically

lower cost of commodity memory has made large scale parallel systems of cache-based microprocessors the

most effective architecture lot large nnstructured grid compt,tatkms.

()tiler enabling dew_lopments for parallel unstructured grid computations include the availability of

efficient and robust grid partitioners [4, 7], and in particular the appearance of standardized software libraries

for inter-processor communication such as the Message Passing Interface (MPI) library [a], which enable code

portability and simplify maintenance.

In the following three sections, an unstructured mesh multigrid solver designed for turbulent external

flow aerodynamk: analysis is described. The convergence rate and scalability of this approach are illustrated

by two examples ill seetiou 5, and a nmltigrid scalability argument is given in section 6. In section 7 the

perfornmnce of calculations using up to 2048 processors and 25 million grid points is described, while section

8 discusses the outlook for even larger future calculations.

2. Base Solver. The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume

technique on meshes of mixed element types which may include tetrahedra, pyramids, prisms, and hexahedra.

In general, prismatic elements are used in the boundary layer and wake regions, while tetrahedra are used in

the regions of inviscid flow. All elements of the grid are handled by a single unifying edge-based data-structure

ill the flow solw'r [15].

The governing equations are discretized using a central difference finite-w_lume technique with added

matrix-lmsed artificial dissipation. Tile matrix dissipation approximates a Roe Rieman-solver based upwind

scheme II:_], but relies on a biharnlonic operator to achieve second-order accuracy, rather than on a gradient-

based extrapolation strategy [10]. The thin-layer form of the Navier-Stokes equations is employed in all

cases, and tile viseous terms are discretized to second-order accuracy by finite-difference aI_l_roximation. D_r

multigrid calculations, a first-order diseretization is employed for the conveetive terms on the coarse grid

levels.

The basic time-stel)ping scheme is a three-stage explicit multistage scheme with stage coefficients opti-



mizedfor highfrequencydampingproperties[24],andaCFLnumberof 1.8.Convergenceisacceleratedby
a localbh)ckJacobipreconditioner,whichinvolvesinvertinga 5x 5 matrixfor eachvertexat eachstage
[16,17].A low-Mathnumberpreconditioner[26,22,21]isalsoimplementedin orderto relievetile stiffness
associatedwith thedisparityin acousticandconvectiveeigenvaluesin regionswheretheMachnulnberis
verysmallandtheflowbehavesincompressibly.Thelow-Mathnumberpreconditioneris implementedby
modi_'ingthedissipationtermsill theresidualasdescribedin [10],andthentakingthecorrespondillglin-
earizationof thesemodifiedtermsintoaccountill the,lacobipreconditioner,a processsometimesreferred
to as"pceco_tditiotti,z92''[10,23].

ThesingleequationturbulencelnodelofSpalartandAllmaras[20]isutilizedto accountforturbulence
effects.ThisequationisdiscretizedandsolvedinamannerCOml)letelyanalogousto theflowequations,with
tileexceptionthattheconvectivetermsareonlydiscretizedto first-orderaccuracy.

3. Directional-Implicit Multigrid Algorithm. Anagglomerationmultigridalgorithm[15,9]isused
to fllrtherenhanceconvergenceto steady-state.Ill this apt)roach, coarselevelsareconstructedbyfl]sing
togetherneighboringfinegridcontrolvolumesto formasmallernumberoflargerandmoreCOlnplexcontrol
volumeson thecoarsegrid.Whileagglomerationmultigriddeliversveryfastconwwgenceratesforinviscid
flowproblems,theconvergenceobtainedforviscousflowproblenlsrelnainsmuchslower,evenwhenemploying
preconditioningtechniquesasdescribedin theprevioussection.Thisslowdownis mainlydueto thelarge
degreeof gridanisotropyin theviscousregions.Directionalsmoothingandcoarseningtechniques[10,11]
canbeusedtoovercomethisaspect-ratioinducedstiffness.

Directionalsmoothingisachievedbyconstructinglinesill tileunstructuredmeshalongthedirectionof
strongCOUl)ling(i.e.,nornlalto theboundarylayer)andsolvingtheimplicitsystemalongtheselinesusing
atridiagonallinesolver.A weightedgraphalgorithmisusedto constructthe liliesoneachgridlevel,using
edgeweightsbasedonthestencilcoefficientsforascalarconvectiollequation.Thisalgorithmproduceslines
ofvariablelength.In regionswherethemesht)et:omesisotropic,thelengthof theliliesreducesto zero(one
vertex,zeroedges),andthepreconditionedexplicitschenledescribedin theprevioussectionisrecovered.An
exampleof thesetof liliesconstructedfromthetwo-dimensionalunstructuredgridin Figure3.1isdepicted
ill Figure3.2.
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FI(;. 3.3. First AgglomeT_ted Multigrid Level for Two-Dimensional Un-

structured Grid Illustrating 4:1 Dwectional Coarsening in Boundary Layer

Regio_

Ill addition to using a directioual smoother, the agglomeration multigrid algorithm must be modified to take

into a(:count the effect of mesh stretching. The unweighted agglomeration algorithm which groups together

all neighboring control volumes for a given fine grid vertex [15] is tel)laced with a weighted (:oarsening

algorithm which only agglomerates the neighboring control volumes which are the most strongly connected

t() the current fine grid control volume, as determined by the same edge weights used in the line construction

algorithm.

This effectively results in semi-coarsening type behavior in regions of large mesh stretching, and regular

coarsening in regions of isotropic mesh cells. In order to Inaintain favorable coarse grid complexity, an

aggressive coarsening strategy is used in anisotropic regions, where for every retained coarse grid point,

three fine grid control vohnnes are agglomerated, resulting in an overall complexity reduction of 4:1 for

the coarser levels in these regions, rather than the 2:1 reduction typically observed for senti-coarsening

techniques. In inviscid flow regions, the algorithm reverts to the isotrol)ic agglomeration procedure and an

_:1 coarsening ratio is ot)tained. However, since most of the mesh points reside in the boundary layer regions,

the overall coarsening ratios achieved between grid levels is only slightly higher than 4:1. An example of

the first directionally agglomerated level on a two-dimensional mesh is depicted in Figure 3.3. where the

aggressive agglomeration normal to the boundary layer is observed.

4. Parallel Implementation. Distributed-memory explicit message-passing parallel implementations

of unstructured mesh solvers have been discussed extensively in the literature [13, 1, 25[. In this section

we fi)cus on the non-standard aspects of the present implementation which are particular to the directional-

implicit agglomeration multigrid algorithm.

In the multigrid algorithm, the vertices on each grid level must be partitioned across the processors of

the machine. Since the mesh levels of the agglomeration nmltigrid algorithm are fully nested, a partition

of the fine grid could be used to infer a partition of all coarser grid levels. While this would minimize

the communication in the inter-grid transfer routines, it affords little control over the quality of the coarse

grid partitions. Since the amount of intra-grid computation on each level is much nlore important than the

inter-grid computation between each level, it is essential to optimize the partitions on each grid level rather

than between grid levels. Therefore, each grid level is partitioned independently. This results in unrelated

coarse and line grid partitions. In order to minimize inter-grid (:ommunication, the coarse level partitions are



renumberedsuchthattheyareassignedto thesameprocessorastilefinegridpartitionwithwhichtheyshare
themostoverlap.Foreachpartitionedlevel,theedgesof themeshwhichstraddletwoadjacentprocessors
areassignedtooneoftheprocessors,anda"ghostvertex"isconstructedin thisprocessor,whichcorresponds
to thevertexoriginallyaccessedbytheedgein theadjacentprocessor(c.f. Figure4.1).Duringaresidual
evaluation,thefluxesarecomt)utedalongedgesandaccunmlatedto thevertices.Tile fluxcontributions
accunmlatedattheghostverticesmustthenbeaddedtothefluxcontributionsattheircorresl)ondingphysical
vertexlocationsin orderto obtainthecompleteresidualat thesepoints.Thisphaseincursinterprocessor
communication.In anexplicit(or pointimplicit)scheme,theut)datesat all I)oints('allthenbecomputed
withoutanyinterprocessorcomnmnicationoncetheresidualsat all pointshavebeencalculated.Thenewly
updatedvaluesarethencommunicatedto theghostpoints,andtile t)rocessisrel)eated.
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The use of line-solvers can lead to additional complications for (listributed-nmnlory parallel iml)lementations.

Since tile classical tridiagonal line-solve is all inherently sequential operation, any lille which is split between

multiple processors will result in processors reinaining i(tle while the off-I)rocessor 1)ortion of their line is

coml)uted on a neighboring processor. However, the particular tol)<)l<)gy of tile line sets ill the unstructured

grid permit partitioning the mesh ill such a manner that lines are conq)letely contained within an individual

processor, with minimal i)enalty (in terms of processor imbalance or additional munbers of cut edges).

This call be achieved by using a weighted-graph-based mesh partitioner such as tile CHACO [4] or METIS

[6] partitioners. Weighted graph partitioning strategies atteml)t to generate balanced l)artitions of sets

of weighted vertices, and to minimize the suln of weighted edges which are intersecte(I by the I)artition

boundaries. Ill order to avoid partitioning across implicit lines, the original unweighted graph (set of vertices

and edges) which defines the unstructured mesh is contracted along the implicit lines to 1)roduce a weighted

graph. Unity weights are assigned to the original graph, and any two vertices which are joined I)y an e(tge

which is part of all implicit lille are then merged together to form a new vertex. Merging vertices also

produce merged edges as shown ill Figure 4.2, and the weights associated with the merged vertices and

edges are taken as the sum of the weights of the constituent vertices or edges. The contracted weighted

gral)h is then partitioned using the partitioners des(:rit)ed ill [6, 5], and the resulting partitioned graph is

then de-contracted, i.e., all constituent vertices of a merged vertex are assigned the partition nmnt)er of that

vertex. Since the implicit lines reduce to a single l)oint in the contracted graph, they can never 1)e broken

by the I)artitioning process. The weighting assigned to the ('ontracted graph ensures load balancing and



comnmnication optimization of the final uncontracted graph in the partitioning process.

As an example, the two dimensional mesh in Figure 3.1, which contains the ilnplicit lines depicted

in Figure 23.2, has been partitioned both in its original unweighted uncontracted form, and by the graph

contraction method described al)ove. Figure 4.3 depicts the results of both approaches for a 32-way partition.

The unweighted partition contains 4760 cut edges (2.6 _ of total), of which 1041 are line edges (also 2.6 _,

of total), while the weighted partition contains no intersected line edges and a total of 5883 cut edges (3.2

c/c of total), i.e., a 23(Z, increase over the total numl)er of cut edges in the non-weighted partition.

Fit:, 1.3. Compa_'_son of Unweighted (left) and Weighted (mght) 32-Way t)artiti:on of Two-Dimensional Mesh

5. Scalability Results. Two test cases are employed to examine the convergence 1)ehavior and scala-

bility of the directional implicit parallel unstructured multigrid solver. The first case consists of a relatively

coarse 177,837 point grid over a swept and twisted wing, constructed by extruding a two-dimensional grid

over an RAE 2822 airibil in the spanwise direction. Figure 5.1 illustrates the grid for this case along with the

implicit lines used by the solution algorithm on the finest level. The grid contains hexahedra in the |)ound-

ary layer and (spanwise) prismatic elements in regions of inviscid flow, and exhibits a normal spacing at the

wing surface of 10 -(_ chords. Approximately 67_) of the fine grid points are contained within an implicit

line, and no implicit lines on any grid levels were intersected in the 1)artitioning process for all cases. This

case was run at a freestream Mach number of 0.1, an incidence of 2.'31 degrees, and a Reynolds number of

6.5 million. The convergence of the directional lint)licit nmltigrid algorithm is compared with that achieved

by the explicit isotropic multigrid algorithm [15] on the equivalent two dimensional problem in Figure 5.2.

The directional implicit multigrid algorithm is seen to t)e much more effective than the isotropic algorithm,

reducing the residuals by twelve orders of magnitude over 600 nmltigrid \V-cycles.

Tile second test case involves a finer grid of 1.98 million points over an ()NEtlA M6 wing. The grid

was generated using the VGRID mlstructured tetrahedral mesh generation program [18]. A post-processing

operation was employed to merge the tetrahedral elements in tile boundary layer region into prisms [15, 14].

The" final grid contains 2.4 million prismatic elements and 4.6 million tetrahedral elements, and exhibits a

normal spacing at the wall of 10 -7 chords. Approxilnately 62% of the fine grid points are contained within

an implicit line. and no implicit lines on any grid levels were intersected in the partitioning process for all

cases. The fl'eestream Mach number is 0.1, the incidence is 2.0 degrees, and the Reynolds number is 3

million. The residuals are reduced by seven orders of magnitude over 6110 nmltigrid "W-cycles in this case.



Thisconvergencerateissomewhatslowerthanthat achievedontile previousproblem,andthantile rates
obtainedon two-dimensionalprobtenmusingthesamealgorithm[11].This is typicalof theconvergence
ratesobtainedbytile currentalgorithmongenuinelythree-dimensionalt)roblems.
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The scalability of the solver for these two cases is exanfined on an SGI Origin 2000 an(l a Cray T3E-600

machine. The SGI Origin 2000 machine contains 128 MIPS R10000 195 Mhz processors with 286 Mbytes of

inemory per processor, for an aggregate memory capacity of 36.6 Gbytes. The Cray T3E contains 512 DEC'

Alpha 300 Mhz proce, ssors with 128 Mt)ytes of memory per processor, for an aggregate memory capacity of

65 Gbytes. All the cases reported in this section were run in dedicated mode.

Figures 5.3 and 5.4 show the relative speedul)s achieved on the two hardware platforms for the RAE

wing case, while Figures 5.5 an(l 5.6 depict the corresponding results for the ONERA M6 wing case. For

the purposes of these figures, perfect speedups were assumed on the lowest numl)er of processors for which

each case was rml, and all other speedul)S are coml)uted relative to this value. In all cases, timings were

measured for tile single grid (non-nmltigrid) algorithm, the nmltigrid algorithm using a V-cycle, and the-

nmltigrid algorithm using a W-cycle. Note that the best nmnerical convergence rates are achieved using the

\V-cycle nndtigrid algorithm.

For the coarse RAE wing case, the results show good scalal)ility lit) to moderate numbers of l)rocessors.

while the fillet" ONERA M6 wing case shows good scalability up to the maximum mnnber of processors on

each machine, with only a slight drop-off at tile higher numbers of processors. This is to be exl)e('ted, since

the relative ratio of computation to connnunication is higher for finer grids. This effect is also demonstrated

by the superior scalability of the single grid algorithm versus the multigrid algorithlns, and of the V-cych,

nmltigrid algorithm over the W-cycle multigrid algorithm (i.e., the W-cycle nmltigrid algorithm pertbrins

additional coarse grid sweeps compared to the V-cycle algorithnl). Note that for the RAE wing test case on

512 processors of the T3E, the fine grkl contained only 348 vertices per processor, while tile coarsest level

contained a lllei'e 13 points per l)rocessor. While the \V-cycle Mgorithm suffers somewhat in conq)utatiolml



perfbrmance for coarser grids on high processor counts, the parallel performance of the W-cycle improves

substantially for finer grids. Numerically the most robust and efficient convergence rates are achieved using

this cycle. While these results reveal faster single processor computational rates for the Origin 2000, the Cray

T3E-600 demonstrates higher scalability. Ill all cases, the fastest overall computational rates are achieved

on tile 512 l)rocessor configuration of the T3E-600.
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6. Parallel Scalability of Multigrid. The l)revious results demonstrate that multigrid algorithms

provide good scalability on large nmnbers of processors for remsolmbly sized problems. For a single-grid

explicit scheme, the ratio of computation to communication remains relatively (:onstant as the number of

l)rocessors is increased, provided the problem size is increased proportionately. While this is also true for

the finest grid levels of a multigrid algorithm, the coarsest grid of a multigrid algorithm nmst retain a fixed

size as the fine grid prot)lem size is increased (and extra grid levels are added). Thus, the parallel efficiency



of thecoarsestgridof themultigridalgorithmwill deterioratecontinuouslyasthenumberof processorsis
increased,ultimatelyreachingapointwheretherearefewercoarsegrid pointsthanprocessors.Thishas
leadto speculationin thepastthat multigridmethodsshouldscaleunfavorablyforverylargenumbersof
processors[2].However,astheproblemsizeis increased,theworkon thecoarsestgrid becomesa smaller
fractionoftileoverallwork,andasimpleargumentcanbemadewhichsuggestsawellformulatedmultigrid
algorithmwill scaleasymptoticallyto withinaconstantof its underlyingfinegridsmoothingalgorithm.

If N denotes the number of title grid points for a problem to he solved, and P denotes the nmnber of

processors, then the ratio _, i.e.. tile number of grid points per processor, is a measure of the computation

work to be l)erformed on the fine grid by each processor. Similarly [_] _ represents tile surface area of this

partition (in three dimensions), which is a measure of the (:ommunication to be performed by each processor

on the fine grid. The ratio of (:omputation to commulfication tbr tile fine grid is therefore

(6.1) _ " =

which is constant if N and P are increased proportionately to each other, as explained above.

For a nmltigrid V-cycle which I)erforms one slnoothing on each grid level, and where the coarsening factor

between fine and coarse grids is 8, the total work per nmltigrid cycle for each processor is thus:

(0.2) N [1118N
-- x 1+ + + -P g ' re

whereas the total comnmnication per nmltigrid cycle is give by:

2/_ 1 1 4

(6.3) x. 1+ _+ _+ .... :i

so that the ratio of computation to connnunication for the entire nmltigrid cycle is given by:

[P]'/:_7

which is similar to that observed for the single grid algorithm to within a nmltiplicative constant. Therefore,

in spite of the poor scalability of the fixed coarse grid problem size, the entire multigrid algorithm can

be expected to scale similarly to the title grid Mgorithm for increasing problem size on large numl)ers of

1)rocessors. Although a W-multigrid cycle ol)erating on S:I coarsened grid levels can also be shown to

scale favorably, lower coarsening ratios (such as 4:1) will ultimately lead to worse asymi)totic scalability

and should be avoided. This current argunmnt neglects the inter-grid communication, which is small in

the current implenmntation, and non-existent when a fully nested fine-coarse grid t)artitioning strategy is

eml)h)yed.

7. Large Test Case Results. The next test case is inten(Icd to demonstrate the cal)al)ility of running

vet" 3, large cases on large lltun[)ei's of processors. The configtlration involves the external flow over all aircraft

with (leploycd flaps. The freestream Math munbcr is 0.2, and the 1Reynolds munber is 1.6 million and

the experimental flow incidence varies over a range of-4 degrees up to 24 degrees. The Colnputations are

all l)erfornmd at zero yaw angle, and therefore only include ()lie half of the symmetric aircraft geometry,

(telimited by a symmetry plane.



An initial grid of 3.1 million points was generated for this configuration using tile VGRID unstruc-

tured tetrahedral grid generation package [18, 14]. A finer grid containing 24.7 million vertices was then

obtained through h-refinement of the initial grid, i.e., by subdividing each cell of the initial grid into eight

smaller self-similar cells. Tile refinement operation was performed sequentially (m a single processor of an

SGI Origin 2000, and required apl)roximately 10 Gbytes of memory and 3() minutes of CPU time. Fig-

ure 7.1 depicts the surface grid for the initial 3.1 million l)oint mesh in the vicinity of the flap system.

FI(;. 7.1 lllustratioTl of Surface Grid for Initial 3.1

million Point (;_'id for 7'hrt_e-Dimenszonal Ifigh-Lifl Con-
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ber P_eonditioning and Fine (24.7 million pt) (;rid using

6 Multigr_d Levels and no Preconditioninq at 0.2 Mach

Number and 10 degrees Incidence

]igu_utgo_

The convergence history obtained by the multigrid algorithm h)r the initial and refined grids at an

inci(lence of 10 degrees is shown in Figure 7.2. In both cases, the line implicit algorithm is employed as a

smoother, I)ut the directional agglomeration strategy has been abandoned in favor of the siml)ler isotropic

agglonmration strategy. Memory savings are realized from the faster (8:1) coarsening rates achieve(l t)y the

isotropic agglolneration algorithm (as opposed to 4:1 for the directional algorithm), and fl'om the preceding

argument, the overall nmltigrid algorithm can be expected to scale asyml)totically to within a constant

of the single grid algorithm. ()n the other hand, as a result of tile isotropic agglomeration procedure,

the (:onvergellce rates for these cases are slower than those observed in the previous two cases. However,

the multigrid algorithnl still delivers convergence rates which are relatively insensitive to the overall grid

resoh,tion, as dem(mstrated by the results of Figure 7.2.

The 3.1 million 1)oint grid case has been run oil a variety of machines. The scalability of this case on
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the Cray T3E and SGI Origin 2000 is similar to that illustrated in Figures 5.5 and 5.6. This case requires a

total of 7 Gbytes of memory and 80 minutes on 128 processors (250 MHz) of tile Origin 2000, or 62 minutes

on 256 processors of the Cray T3E-600 for a 500 multigrid cycle run.

The scalability of the single grid and multigrid algorithms for this case o22 the IBM-based ASCI Blue

Pacific machine, and the Intel-based ASCI Red machine is depicted in Figures 7.3 and 7.4. The ASCI

Blue Pacific machine, located at Lawrence Livermore National Laboratory in California, consists of 320

nodes, with each node containing 4 IBM 332Mhz 604e shared melnory processors. The results in Figure 7.3

employed all four processors at each requested node, which was tbund to incur a 20% tinting l)enalty over an

al)proach which employed only a single processor per node, using four times as many nodes. This 1)enalty

is likely due to the fact that the a_'ailable node bandwidth must be shared between the four i)rocessors in

this node, but this al)proach is necessary for accessing large nunll)ers of processors, ht all cases, a l)urely

MPl-based iinplementation has been used. Good scalability is obtained up to apI)roxiInately 256 processors,

after which the i)arallel efficien( T begins to drop off. This is l)artly due to the relatively small size of the

problem for this number of l)rocessors.

The ASCI Red machine, located at Sandia National Laboratory in New Mexico, contains u l) to 4500

dual cpu nodes. The individual CPUs consist of 333 Mhz Intel Pentium Pro processors. The results in

Figure 7.4 only made use of a single ct)u per node, since there is no way to access both l)rocessors on a node

with a purely MPI-based (:()de. On this machine, good scalability is observed up to 2048 processors for the

single grid case, and up to 1024 t)rocessors for the multigrid case. The multigrid case wouhl likely scale well

at 2048 processors, although such a run has not been l)erformed to date.
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FI(:;, 7.3. Observed Speed'up,s for 3.1 nzillzoT_ poi7_t grid FI(;. 7.4, Observed Speedaps for 3.1 million point grzd

aircraft ease on ASC[ Blue Pacific Machzne air('r(ift case on ASCI Red ]tlachiT_e

The 24.7 nfillion l)oint (:a,se was run on the Cray T3E-600 ma('hine using 512 processors. This case requires

52 Gl)ytes of Umlnory, and 4.5 hours for 500 multigri(l ('ycles, which inchl(les 30 nfinutes of I/O time to read

the grid file (9 GI)ytes), and write the solution file (2 GI)ytes). The fine grid (:ase was also I)enchmarked on a

larger Cray-T3E-1200E machine. The Cray T3E-1200E contains 600 MHz DEC Alpha t)rocessors as well as

an upgraded communication chil) , as coml)ared to the t)reviously mentioned T3E-600 (300MHz l)rocessors).

This l)articular mac]fine contained 1520 l)t'()(:ess()rs each with a minimum of 256 Mbytes l)er I)rocessor. Figure

7.5 del)icts the speeduI)s obtained [)y the single grid, and the five level and six level multigrid runs on the

II



24.7 million point grid running on 256,512, 1024 and 1450 processors. The single grid computations achieve

ahnost prefect scalability up to 1450 processors, while the speedups achieved by the multigrid runs are only

slightly beh)w the ideal vahles. The six level multigrid case could not be run on the maxinmm number of

processors, since the partitioning of the coarsest level resulted in empty processors with no grid points. While

this does not represent a fimdamental problem, the software was not designed for such situations. Ill any

case, the five level nmltigrid runs are the most efficient overall, since there is little observed difference in the

conw_rgence rate between the five and six level nmltigrid runs. The single grid results are included simply

fin' comparison with the multigrid algorithm, and are not used for actual computations since convergence is

extrelnely slow. The colnlmtation times are depicted in Table 7.1. On 512 processors of tile Cray T3E-1200E,

the 5 level lnultigrM case requires 19.7 seconds per cycle, as compared to 28.1 seconds per cycle on the 512

processor Cray T3E-600. which corresponds to an increase in speed of over 40% simply due to tile faster

individual processors. On 1450 processors, tile same case required 7.54 seconds per cycle, or 63 minutes of

computation t'or a 500 multigrid cycle run. A colnplete rtm required 92 minutes, which includes 29 minutes

of I/O time, although no atteml)t at optimizing I/() was made.
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TABLE 7.1

Timing s and Estimated Computational Rates for 24.7

million point Grid Case on Various (Trz_y T3E G'onfigura-

tions: Computational Rates are obtained by linear scaling

according to waU clock time with smaller problems z'un on

the Cray C90 using tire hardware performance monitor for

Mfiop ratings

24.7 Million Pt Case

(5 Multigrid Levels)

Platform Procs

T3E-600 512

T3E-1200E 256

T3E-1200E 512

T3E-1200E 1024

T3E-1200E 1450

Time/Cyc Gflop/s

28.1 22.0

38.3 16.1

19.7 31.4

10.1 61.0

7.54 82.0

8. Conclusions. While the calculations described in this paper have demonstrated good overall per-

tbrnmuce for large l)rohh'ms on tlmusands of processors, these calculations are limited by the 1)re-processing

operations such as grid partitioning, and coarse nmltigrid level construction, which are currently performed

sequentially on a single processor using shared memory machines. The parallelization of these operations for

distributed memory computer architectures is required before much larger calculations can be attempted.

I/l) issues, including I)andwidth. file size, and file transfer between machines is also a serious issue for

calculations of this size, which must be addressed in future work.

Whih' a (listributed memory al)proach has been adol)ted, there is a growing trend to employ clusters

of mid-sized shared menmry machines. This is 1)erhaps due to the fact that tile most marketable scientific

computer m'chitectures are mid-sized shared nmmory machines. Clustering such machines together is seen as

a cost effective aI)proach to building customized very high performance systems. An effective progrmmning

12



model for such architectures may involve the use of mixed shared memory (using OpenMP) and distributed

memory (using MPI) libraries. An extension of the current solver to a mixed shared-distributed memory

model is currently under way.
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